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Abstract—Accurate prediction of the remaining useful life
(RUL) of lithium-ion batteries is essential for battery man-
agement systems in electric vehicles, consumer electronics, and
energy storage. This paper presents a machine learning approach
trained on the open-source NASA battery aging dataset on
Kaggle. A complex feature engineering strategy combines dis-
charge, charge, and calculated impedance from current sensing
measurements. With this, the model achieves a mean absolute
error of 8.45 cycles and an R2 error of 0.962.

I. INTRODUCTION

Lithium-ion batteries degrade over time due to irreversible
electrochemical processes. Predicting their remaining useful
life (RUL) helps with proactive maintenance and safer oper-
ation. Among publicly available sources, the NASA Prognos-
tics Center data offers high-resolution discharge, charge, and
impedance values collected under controlled conditions, at the
local AMES Research Center. The variety of this dataset is
utilized to build a regression model using a decision tree with
22 layers and 1818 leaf nodes.

II. DATASET

The dataset consists of 24 commercial-grade 18650 cells
cycled at three temperatures (24◦C, 43◦C, 4◦C). For each cell,
every charge, discharge, and impedance test is stored in an
individual CSV. These include terminal voltage, current, tem-
perature, and timestamp with current sweeps storing complex
values for impedance. Altogether, these variables represent the
electrochemical properties of the battery which determine its
remaining lifespan. To make this data suitable for modeling,
scalar impedance features are extracted by parsing the com-
plex values and computing the average real and imaginary
components:
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where Zi are the complex impedance values from each mea-
surement point in the sweep.

Although the dataset stops recording shortly after a battery
reaches its end-of-life (EOL) condition, we define useful end-
of-life as the point where the battery’s measured capacity drops
below 80% of its initial value. This threshold is widely used
in literature and industry to indicate the end of a battery’s
practical service life. Accordingly, the label for each discharge
cycle n is defined as:

RULn = NEOL − n, (2)

where NEOL is the index of the first cycle that falls below the
80% capacity threshold. While the full dataset extends beyond
this point, the model focuses on predicting the remaining
useful life leading up to this degradation boundary.

III. METHODOLOGY

A. Input Features

• Cycle Index: test id captures how many usage cycles the
battery has been through.

• Discharge Features: Duration and energy throughput,
which is computed as the integral of instantaneous power.

• Charge Features: Duration and energy throughput from
the preceding charge.

• Impedance Features: Mean real (Re) and imaginary
(Xe) parts from the latest impedance spectrum.

• Ambient Temperature: Logged chamber temperature.
The final design matrix contains ten numerical predictors after
dropping identifiers.

The raw CSVs are parsed per-cycle from over 7500 files
using NumPy and pandas. Complex impedance strings such as
0.162-0.024j could be cast with Python’s complex constructor
from sense current. Missing impedance samples are imputed
with forward filling.

B. Model Choice

I employed a Decision Tree Regressor from the scikit-learn
library with default Gini splitting. This model is well-suited for
battery Remaining Useful Life (RUL) prediction due to several
key advantages. First, the tree structure allows us to trace the
impact of features directly along the prediction path. Secondly,
decision trees inherently capture non-linear relationships and
complex feature interactions, which are common in the battery
degradation processes.

Unlike linear models, which assume additive and indepen-
dent contributions from each feature, decision trees are capable
of modeling conditional dependencies. For instance, the effect
of impedance may be significant only when the voltage is
below a certain threshold, a structure naturally learned through
recursive partitioning. Moreover, decision trees handle missing
values and heterogeneous feature scales without the need for
normalization or imputation.

While decision trees are prone to overfitting, this risk can
be mitigated through train-test validation and feature selection.
The ability to reveal the data’s structure and provide fast
inference with low computational overhead, makes it a strong
baseline choice for this task.

C. Training and Testing

Sparce impedance measurements made the model difficult
to effectively train. They were sampled at a lower frequency
and only occur every 50 cycles. By forward-filling the latest
sweep to subsequent cycles, MAE improved by 7 %, and no
data was falsified by interpolation.
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There were also slight inconsistencies in the data such as an
i instead of j caused parsing failures. Robust pre-processing to
normalize all the entries was required before complex casting.

The dataset is partitioned with an 80/20 shuffle split sep-
arated by cell ID to avoid learning cell-specific artifacts.
Evaluation metrics include mean absolute error (MAE), root
mean square error (RMSE), and coefficient of determination
(R2).

IV. EVALUATION AND ANALYSIS

Multiple analyses validate the model’s performance reliabil-
ity and generalization. The distribution shows that most sam-
ples cluster around RUL values close to zero, with relatively
fewer examples in both early-life (positive RUL) and post-
EOL (negative RUL) regions. The following plots and metrics
summarize the Decision Tree model’s behavior in predicting
remaining useful life.

A. Feature Relationships and Importance
Figure 1 displays feature importances extracted from the

trained tree. The model ranks charge energy and discharge
energy highest, followed by impedance features and test
id, indicating the model captures both electrochemical and
chronological degradation factors.

Fig. 1. Decision Tree feature importances.

B. Prediction Accuracy
Figure 2 compares predicted versus actual RUL. The near-

diagonal alignment of points and tight scatter suggest that the
model captures both high and low RUL values effectively, with
only a few outliers.

C. Residual Analysis
The residual distribution (Figure 3) is nearly symmetric and

tightly centered at zero, indicating unbiased predictions. A few
extreme errors inflate the RMSE metric relative to the MAE,
which is expected in a real-world dataset containing outlier
behavior.

When residuals are plotted against true RUL values the
scatter remains balanced, but more variance appears in the
mid-to-late life range. This suggests that as batteries degrade,
the system becomes less predictable with physical degradation
dynamics, making it a heteroskedastic distribution.

Fig. 2. Predicted vs. actual RUL on test set.

Fig. 3. Histogram of residuals (actual - predicted).

V. CONCLUSION

This model demonstrates a strong ability to predict RUL
with an R2 of 0.962, an MAE of 8.45 cycles, and an RMSE
of 31.6 cycles. It performs well across most of the data range,
but is sensitive to outliers and imbalance in long-life examples.
The tree’s ability to exploit nonlinear features like impedance,
while retaining interpretability, makes it a strong candidate for
prognostic applications like battery degradation.


	Introduction
	Dataset
	Methodology
	Input Features
	Model Choice
	Training and Testing

	Evaluation and Analysis
	Feature Relationships and Importance
	Prediction Accuracy
	Residual Analysis

	Conclusion

